

SECURITY CLASSIFICATION OF THIS PAGE					
♠ F	REPORT DOGG	ENTATION	PAGE		
	1b. RESTRICTIVE MARKINGS NA				
AD-A209 971	D&	3. DISTRIBUTION.	AVAILABILITY OF	FREPORT	- <u> </u>
	••	Distribution Unlimited			
4. PERFORMING ORGANIZATION REPORT NUMBER		5. MONITORING ORGANIZATION REPORT NUMBER(S)			
Uniformed Services University of the Health Sciences		NA NA			
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL		7a. NAME OF MONITORING ORGANIZATION			
Uniformed Services Univ.	(If applicable)				
	NA	Office of Naval Research			
6c. ADDRESS (City, State, and ZIP Code) Laser Biophysics Center I	IGIIHG	7b. ADDRESS (City, State, and ZIP Code) 800 N. Quincy St.			
Laser Biophysics Center, USUHS 4301 Jones Bridge Road					
Behtesda, Maryland 20814-	Arlington, VA 22217-5000				
8a. NAME OF FUNDING/SPONSORING	8b. OFFICE SYMBOL	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER			
ORGANIZATION Office of Naval Research	(If applicable) ONR	N00014~WR-24020			
8c. ADDRESS (City, State, and ZIP Code)		10. SOURCE OF FUNDING NUMBERS			
800 N. Quincy St.		PROGRAM	PROJECT	TASK	WORK UNIT
Arlington, VA 22217-5000		ELEMENT NO	NO	NO.	ACCESSION NO
THE ALL A		61153N	RR04106	4415-80	6
11 TITLE (Include Security Classification)					
(u) Protein Dynamics Studí	ed with Resor	nantly Enha	anced Ouas	i-Elasti	c Light
12 PERSONAL AUTHOR(S)		4 = 3334			Scattering
Reinisch, Lou					
13a. TYPE OF REPORT 13b. TIME CO Annual FROM 7/	14. DATE OF REPO 15 June	RT (Year, Month, 1989	Day) 15. PAGI 9	E COUNT	
16. SUPPLEMENTARY NOTATION		-			
17. COSATI CODES	Continue on reverse if necessary and identify by block number)				
FIELD GROUP SUB-GROUP	amics' Microbalance Purple				
 	Light Scatte Resonance Er	-			
Resonance Enhancement Thermal Diffusion — ——————————————————————————————————					
In order to investiga	ite and unders	stand the d			
ations, specifically the interaction between dynamical structure and function,					
we have started a program to used resonantly enhanced light scattering to probe the fluctuation spectrum. Here we report on a new technique, the use					
probe the fluctuation spec of a quartz microbalance t					
at 5 MHz. We report on mo					
sample with incident laser					
of quasi-elastic light scattering on samples of membrane fragments containing					
the bacteria Bacteriorhodo	psin.	**	- ·		
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT ☐ UNCLASSIFIED/UNLIMITED ☐ SAME AS RPT ☐ DTIC USERS			CURITY CLASSIFIC	ATION	
22a NAME OF RESPONSIBLE INDIVIDUAL			1) 22c OFFICE	SYMBOI	
22a NAME OF RESPONSIBLE INDIVIDUAL M. Marron 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL (202) 696-4760 ONR					
DD FORM 1473, 84 MAR 83 AP	R edition may be used un				

Annual Report on Contract N00014-WR-24020

R&T Code: 4415806

Date: 1 July, 1989

Principal Investigator: Lou Reinisch

Contractor: Uniformed Services University

Contract Title:Protein Dynamics Studied with Resonantly Enhanced
Quasi-Elastic Light Scattering

Research Abstract: The idea that the structure of the protein is important for its function (lock and key model) must be revised: The dynamical structure of a protein is important for its function. Consider the protein myoglobin (Mb); it has been used in a wide range of studies. Protein motion in Mb is essential for ligand binding. Investigations have indicated the importance of protein motion, but none have really measured the frequency spectrum of the fluctuations. Recently, flash photolysis and the Mössbauer effect have put limits on the frequency spectrum, but the shape of the spectrum is still unknown. In the work proposed here, we plan to measure the frequency spectrum of protein motion in Mb using Quasi-Elastic Light Scattering (QELS). We can then study the protein fluctuations as a function of the environment, substrate binding and other perturbations such as low temperature and high pressure. QELS has been used extensively to measure protein diffusion coefficients. Unique to our studies, however, will be the employment of a method common to Raman spectroscopy, resonance enhancement. The incident laser light will be in resonance with the chromophore (e.g., heme group) absorption. We can thereby probe parts of the protein and separate structure fluctuations from protein diffusion. The results from this study will be twofold. First, the relationship between the dynamics of the protein and the function of the system can be better understood. In addition, the dynamical structure of the protein is being probed. The outer shell of Mb has been modelled as a semifluid. We would then expect to see correlations between the measured spectrum and the normal modes of oscillations in viscous liquid drops.

A

Measurement of Protein Hydration Shells Using a Quartz Micro-Balance

L. Reinisch

Department of Radiology, Laser Biophysics Center,
Uniformed Services University, 4301 Jones Bridge Rd., Bethesda, MD 20814
R.D. Kaiser and J. Krim
Department of Physics, Northeastern University
360 Huntington Ave, Boston, MA 02115

Abstract

The protein myoglobin is dried on the surface electrodes of a 5 MHz quartz crystal oscillator. As the humidity above the film increases, the protein absorbs water and develops a hydration shell. The oscillator frequency shift measures the mass of absorbed water. Dramatic incremental decreases in the amplitude of vibration are also observed, corresponding to a softening of the protein structure and subsequent energy dissipation (damping) of the oscillations. The transition of a protein from a dry more rigid structure to a semifluid hydrated state is observed to occur in discrete steps.

This first study is presented to demonstrate the viability of the technique, and the important information one can obtain with the quartz microbalance. The experiment can be repeated as a function of crystal frequency, using a number of crystals from 10 kHz to 100 MHz. The damping of the crystal should, of course, decrease when the frequency of the crystal differs from the frequencies of the protein fluctuations. In addition, the temperature can be varied. The temperature of protein will change the spectrum of protein fluctuations. New information concerning the temperature dependence of the protein internal viscosity could be obtained from this technique. The experiment can also be repeated using different proteins. We anticipate a number of interesting and informative studies to follow.

This work has been submitted to Physical Review Letters (1989).

Laser Induced Heating and Thermal Propagation, A Model of Tissue Interaction with Light

Lou Reinisch

Laser Biophysics Center, Uniformed Services University of the Health Sciences
4301 Jones Bridge Road, Bethesda, MD 20814-4799

Abstract

The temperature distribution in space and time is modeled for an absorbing tissue with incident laser light. We use Beer's Law with absorption coefficient α to describe the light absorbed within the tissue. Heat is diffused away in all directions by the thermal conductivity, κ , of the tissue, and the rate of heat flow is proportional to the temperature gradient. The specific heat, c_p , and the density, ρ , are the remaining parameters in the model. We give the resulting heat flow equation with a source term as the inhomogeneous partial differential equation:

$$\kappa \nabla^2 \mathbf{T} - (c_p \rho) \frac{\partial \mathbf{T}}{\partial t} = -I_0 \alpha \tag{1}$$

where I_0 is the incident laser intensity. Equation (1) is solved with a *Green's* function. The resulting function:

$$T(\mathbf{r},t) = \frac{I_0 \alpha \sqrt{c_p \rho}}{16(\pi \kappa)^{3/2}} \int_0^t dt' \int d^3 x' \frac{\Psi(\mathbf{r}',t')}{(t-t')^{3/2}} exp\left[\frac{-|\mathbf{r}-\mathbf{r}'|^2(c_p \rho)}{4\kappa(t-t')}\right]$$
(2)

of the change in temperature for the tissue is numerically integrated. An arbitrary intensity distribution for the incident laser intensity can be chose using a density distribution $\Psi(\mathbf{r}',t')$. In one example calculation, we use a gaussian intensity distribution with an f/5.7 focussed beam to obtain the temperature distribution in cell membranes during a micro-beam experiment. In the micro-beam experiment, a laser is focussed with a microscope and "aimed" at a cell membrane. A micron size hole is subsequently "burned" through the membrane. We assume that the hole is created whenever the absorbed laser light raises the temperature of the water to its boiling point. The values from water are used for density, thermal conductivity and specific heat in our calculation. The absorption coefficient of the cells is measured with a spectrophotometer. Correlations between the volumes where the calculated temperature exceeds the boiling point of water and the measured hole size from micro-beam experiments are compared.

This work is used to characterize the temperature changes in the resonantly absorbing samples during the light scattering experiments. The resonant light can induce thermal effects (i.e., an increase in diffusion rates from a higher temperature and a decrease in solvent viscosity), as well as stimulating the molecular fluctuations. It is, therefore, important to know the temperature in the sample under the exact experimental conditions. Since our calculations agree well with the "calibration" of the microbeam technique—a hole is created when the water reaches boiling—we expect it to correctly describe the temperature profile of a scattering solution.

This was reported at the Conference on Lasers and Electro-Optics in Baltimore, April 1989. A written manuscript is in preparation.

Photo-Induced Membrane Fluctuations from Purple Membrane Detected with Homodyne Quasi-elastic Light Scattering

József Czégé and Lou Reinisch

Department of Radiology and the Laser Biophysics Center Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20814

Abstract

Membrane fragments containing the protein Bacteriorhodospin are known to pump protons after absorbing light. The photocycle progresses through several intermediate states, as characterized by the absorption spectra, after the absorption of a photon. During this cycle the protein is also known to undergo several conformational transitions in addition to pumping a proton. With low intensity light, the homodyne autocorrelation function shows the membrane fragments to diffuse with rates that correlate well with the size distribution of the membrane fragments. However, when the light is increased, the autocorrelation function shows a dramatic increase the frequency spectrum. Initial measurements have shown a gaussian shaped band of fluctuation frequencies, centered near 1 kHz to be stimulated by the increased light. Thermal effects are currently being checked to explain these additional fluctuations. In addition, the fluctuations are the greatest on the large membrane fragments—those with a diameter greater than 2 μ m.

The idea to use quasi-elastic light scattering to measure fluctuations within biomolecules has received little attention. The changes in the autocorrelation spectrum are generally believed to be very small. Using a combination of carefully controlled experimental techniques, computer assisted data analysis and sample preparation, we believe that we have been successful in measuring changes in the scattered light autocorrelation function. We currently interpret the additional motion as a ruffling of the membrane fragment during the photocycle. Work is continuing to identify this motion.

The light scattering experiments using an autocorrelator were started on the purple membrane fragments instead of heme proteins because the larger membrane fragments scatter light more effectively and the small protein molecules in solution. The purple membrane can also resonantly scatter light and one would expect them to exhibit biomolecular fluctuations. Thus the purple membrane is an excellent molecule to study, in addition to a "training molecule." A manuscript is in preparation and the experiments continue.

Distribution List for Annual and Final Reports

- 1. Put a cover page (Form DD 1473) on your report and attach a copy of the distribution list. Mail one copy of the report to each person on the contractor subset list attached on which your name appears. The other subset list is for your information only. Please don't forget to attach this distribution list to your report otherwise the folks below think they have mistakenly received the copy meant for the Molecular Biology Program and forward it to us.
- Mail two copies to (include a DTIC Form 50 with these two copies too)
 Administrator
 Defense Technical Information Center
 Building 5, Cameron Station
 Alexandria, VA 22314
- 3. Mail one copy to each of the following:
- (a) Dr. Michael Marron
 ONR Code 1141
 Molecular Biology Program
 800 N. Quincy Street
 Arlington, VA 22217-5000
- (b) Administrative Contracting Officer
 ONR Resident Representative
 (address varies see copy of your grant)
- (c) Director,
 Applied Research Directorate
 ONR Code 12
 800 N. Quincy Street
 Arlington, VA 22217-5000
- (d) Director
 Office of Naval Technology
 Code 22
 800 N. Quincy Street
 Arlington, VA 22217-5000

- (e) Director
 Chemical and Biological Sci Div
 Army Research Office
 P. 0. Box 12211
 Research Triangle Park, NC 27709
- (f) Life Sciences Directorate
 Air Force Office of Scientific Research
 Bolling Air Force Base
 Washington, DC 20332
- (g) Director
 Naval Research Laboratory
 Technical Information Div, Code 2627
 Washington, DC 20375

AMZEL, L. Mario
Department of Biophysics
Johns Hopkins School of Medicine
725 North Wolfe Street
Baltimore, MD 21205

ANDERSEN, Niels H. Department of Chemistry University of Washington Seattle, WA 98195

ARNOLD, Frances H.
Dept of Chemical Engineering
California Institute of Technology
Pasadena, CA 91125

AUGUST, J. Thomas Department of Pharmacology Johns Hopkins Medical School 725 North Wolfe Street Baltimore, MD 21205

BEVERIDGE, David L Department of Chemistry Wesleyan University Hall-Altwater Laboratories Middletown, CT 06457

BRAMSON, H. Neal Department of Biochemistry Univ of Rochester Medical Center 601 Elmwood Avenue Rochester, NY 14642

BRUICE, Thomas C.
Department of Chemistry
University of California-Santa
Barbara
Santa Barbara, CA 93106

CASE, Steven T.
Department of Biochemistry
Univ of Mississippi Medical Center
2500 North State Street
Jackson, MS 39216–4505

CHANG, Eddie L. Bio/Molecular Engineering Naval Research Laboratory Code 6190 Washington, D.C. 20375-5000

CHRISTIANSON, David W. Department of Chemistry University of Pennsylvania 231 South 34th Street Philadelphia, PA 19104-6323

CORDINGLEY, John S.
Department of Molecular Biology
University of Wyoming
Box 3944 University Station
Laramie, WY 82071

DeGRADO, William F.
E. I. du Pont de Nemours & Co
Central R & D, Experimental Station
P. O. Box 80328
Wilmington, DE 19880-0328

EVANS, David R.
Department of Biochemistry
Wayne State Univ School of Medicine
540 E. Canfield Street
Detroit, Michigan 48201

FEIGON, Juli F.
Department of Chem & Biochemistry
UCLA
405 Hilgard Avenue
Los Angeles, CA 900024-1569

FICHT, Allison R.
Dept of Med Biochem & Genetics
Texas A&M University
College Station, TX 77843

FRAUENFELDER, Hans Department of Physics University of Illinois Urbana, IL 61801

GABER, Bruce Naval Research Laboratory Bio/Molecular Engineering Branch Code 6190 Washington, DC 20375

GETZOFF, Elizabeth D.
Scripps Clinic & Research Foundation
Department of Molecular Biology
10666 North Torrey Pines Road
La Jolla, CA 92037

GOODMAN, Eugene M. Biomedical Research Institute University of Wisconsin P. O. Box 2000 Kenosha, WI 53141

HO, Pui Shing
Department of Biochemistry and
Biophysics
Oregon State University
Corvallis, OR 97331

HOGAN, Michael E. Baylor Center for Biotechnology 4000 Research Forest Drive The Woodlands, TX 77381

HONIG, Barry Columbia University Dept of Biochem and Molec Biophys 630 West 168th St. New York, NY 10032

HOPKINS, Paul B.
Department of Chemistry
University of Washington
Seattle, WA 98195

KAHNE, Daniel
Department of Chemistry
Princeton University
Princeton, NJ 08544

KEMP, Robert G.
Chicago Medical School
Dept of Biological Chemistry
3333 Green Bay Rd.
North Chicago, IL 60064

KHORANA, Gobind H. Department of Biology MIT 77 Massachusetts Ave. Cambridge, MA 02139

KIM, Sangtae Chemical Engineering University of Wisconsin 1415 Johnson Drive Madison, WI 53706

LANSBURY, Peter T.
Department of Chemistry
MIT
Cambridge, MA 02139

LAURSEN, Richard A. Chemistry Department Boston University 590 Commonwealth Avenue Boston, MA 02215

LENZ, Robert W.
Chemical Engineering Department
University of Massachusetts
Amherst, MA 01003

LEWIS, Randolf V. Molecular Biology Department University of Wyoming University Station Box 3944 Laramie, WY 82071 LINDSAY, Stuart M. Department of Physics Arizona State University Temp, AZ 85278

- LOEB, George I.

 David W. Taylor Research Center

 Code 2841
- Annapolis, MD 21402-5067

MASILAMANI, Divakar Biotechnology Department Allied-Signal Inc. P. O. Box 1021R Morristown, NJ 07960

McCONNELL, Harden M. Stanford University Department of Chemistry Stanford, CA 94305

McELROY, Willam D.
Department of Chemistry
University of California - San Diego
La Jolla, CA 92093-0601

MERTES, Kristin Bowman University of Kansas Dept of Chemistry Lawrence, Kansas 66045

NAGUMO, Mark Bio/Molecular Engineering Branch Naval Research Laboratory Code 6190 Washington, DC 20375-5000

OLIVERA, Baldomero M. Department of Biology University of Utah Salt Lake City, UT 84112

PABO, Carl O.
Department of Biophysics
Johns Hopkins University
School of Medicine
Baltimore, MD 21205

PRENDERGAST, Franklyn G.
Dept of Biochemistry & Molec Biol
Mayo Foundation
200 First St. SW
Rochester, MN 55905

PUGH, Jr., Edward N.
Deaprtment of Psychology
University of Pennsylvania
3815 Walnut Street
Philadelphia, PA 19104-6196

RACKOVSKY, Shalom R.
Department of Biophysics
University of Rochester
School of Medicine and Dentistry
Rochester, NY 14642

RAJAN, K. S.
Illinois Institute of Technology
Research Institute
10 W. 35th St.
Chicago, IL 60616

REINISCH, Lou Laser Biophysics Center Uniformed Services University 4301 Jones Bridge Road Bethesda, MD 20814

RICH, Alexander MIT Department of Biology Cambridge, MA 02139

RICHARDS, J. H.
California Institute of Technology
Division of Chemistry and Chemical
Engineering
Pasadena, CA 91125

ROTHSCHILD, Kenneth J. Department of Physics Boston University 590 Commonwealth Avenue Boston, MA 02215

SCHULTZ, Peter G.
Department of Chemistry
University of California-Berkeley
Bekeley, CA 94720

SEEMAN, Nadrian Department of Chemistry New York University New York, NY 10003

SELSTED, Michael E. UCLA Dept of Medicine 37-055 CHS Los Angeles, CA 90024

SIGMAN, David S.
UCLA School of Medicine
Dept of Biological Chemistry
Los Angeles, CA 90024
SIKES, Steven C.
Department of Biological Sciences
University of South Alabama
Mobile, AL 36688

SINSKEY, Anthony J. Laboratory of Applied Microbiology MIT Department of Biology Cambridge, MA 02139

STEWART, James M. Department of Chemistry University of Maryland College Park, MD 20742

STEWART, John M.
Department of Biochemistry
University of Colorado
Health Science Center
Denver, CC 30262

TURNER, Douglas H.
Department of Chemistry
University of Rochester
Rochester, NY 14627

URRY, Dan W. Laboratory of Molecular Biophysics University of Alabama P. O. Box 311 Birmingham, AL 35294

WAITE, J. Herbert College of Marine Studies University of Deleware Lewes, DE 19958

WARD, Keith B. Naval Research Laboratory Code 6030 Washington, DC 20375

WARSHEL, Arieh
Department of Chemistry
University of Southern California
University Park
Los Angeles, CA 90089-0482

WATT, Gerald D.
Dept of Chemistry & Biochemistry
University of Colorado
Campus Box 215
Boulder, CO 80309-0215